注射阶段是从螺杆推进熔体开始到熔体充满型腔为止。此时,在螺杆头部对熔体所设定的压强(即注射压力)和螺杆推进熔体的速度(即注射速度)是注射成型的关键参数。在注射阶段,必须建立足够的速度和压力才能确保熔体充满模腔。如果注射压力调节过低会导致模腔压力不足,熔体不能充满模腔;反之,如果调整过高,则会造成制品溢边、胀模等不良现象。 保压阶段是从熔体充满模腔开始到浇口冻封为止。注射阶段完成后,必须继续保持注射压力,维持熔体的外缩流动,一直持续到浇口冻封为止。因此保压阶段在保压压力的作用下,模腔中的熔体将得到冷却补缩和进一步的压缩和增密。如果保压压力不足,则会导致模腔压力过低。保压时间会影响熔体的倒流,保压时间越短则模腔压力降低得越快,较终使模腔压力越低。WeiW.C.J.研究表明,高保压压力(≧70MPa)和长保压时间对于成型坯体的性质和坯体表面质量均更为有利。 料筒与喷嘴温度的设定与控制对注射成型的质量也有着重要影响。料筒温度是指料筒表面的加热温度。根据注射物料在料筒内的塑化机理分3段加热:**段:固体输送段,是靠近料口处,温度要低些,有冷却水冷却防止物料架桥,保证较高的固体输送效率;*二段:压缩段,是物料处于压缩状态并逐渐地熔融,温度设定比**段要高20—25℃;*三段:计量段,是物料全熔融的阶段,预塑开始时,这一段对应于螺杆计量段,在预塑终止后形成计量室储存塑化好的物料。一般来讲,*三段温度比*二段要高20~25℃,以保证物料处于熔融状态。 微注射成型( Micro Injection Molding) 是近几年发展起来的新技术[12]。由于结构陶瓷具有优异的力学、化学和耐高温特性,在微电子产业和微机电系统( MEMS)中许多微型部件(几十微米至1000μm) 需采用结构陶瓷材料。相对于其它微加工技术,采用微注射成形将陶瓷或金属粉末一次成形得到各种形状的坯件,制造成本较低,效率高,因此已经成为较有应用前景的一种先进微成型制造技术。目前,一些氧化铝、氧化锆、氮化硅、锆钛酸铅、钛酸钡、羟基磷灰石以及氮化铝的微型陶瓷部件已由低压微注射成型法制成,其成形温度为60~100℃,注射压力为3~5 MPa; 有些微型陶瓷零部件已进入实际应用,图2为微注射成型法制备的各种微型陶瓷零部件[13]。